#!/usr/bin/env python3 """ Bank Statement to YNAB Converter Converts bank statements from various formats to YNAB-compatible CSV files """ import os import sys import glob import pandas as pd from pathlib import Path def parse_norwegian_number(value): """Convert Norwegian number format (comma decimal) to float""" if pd.isna(value) or value == '': return 0.0 # Convert to string and replace comma with dot str_value = str(value).replace(',', '.') try: return float(str_value) except ValueError: return 0.0 def parse_norwegian_date(date_str): """Convert DD.MM.YYYY format to YYYY-MM-DD""" if pd.isna(date_str) or date_str == '': return '' try: # Parse DD.MM.YYYY and convert to date object return pd.to_datetime(date_str, format='%d.%m.%Y') except (ValueError, TypeError): print(f"Invalid date format: {date_str}") exit(1) def parse_bank_sparebank1(data): """ Parse Sparebank 1 bank data Expected columns: Dato, Beskrivelse, Rentedato, Inn, Ut, Til konto, Fra konto """ result = [] for _, row in data.iterrows(): inflow = parse_norwegian_number(row.get('Inn')) outflow = parse_norwegian_number(row.get('Ut')) # Convert outflow to positive if negative if outflow < 0: outflow = -outflow result.append({ 'Date': parse_norwegian_date(row.get('Dato', '')), 'Payee': row.get('Beskrivelse', ''), 'Memo': row.get('Til konto', ''), 'Outflow': outflow, 'Inflow': inflow }) return pd.DataFrame(result) def parse_bank_norwegian(data): """ Parse Norwegian bank data Expected columns: TransactionDate, Text, Memo, Amount """ result = [] for _, row in data.iterrows(): amount = row.get('Amount', 0) inflow = amount if amount > 0 else 0 outflow = -amount if amount < 0 else 0 # Make outflow positive result.append({ 'Date': row.get('TransactionDate', ''), 'Payee': row.get('Text', ''), 'Memo': row.get('Memo', ''), 'Outflow': outflow, 'Inflow': inflow }) return pd.DataFrame(result) # Dictionary of banks, filename patterns, and parsing functions BANKS = { "Sparebank1": { "patterns": ["OversiktKonti*.csv"], "output_filename": "YNAB-{bank}-FROM-{first_date}-TO-{last_date}", "parse_function": parse_bank_sparebank1, "delimiter": ";" }, "Norwegian": { "patterns": ["BankNorwegian*.xlsx", "Statement*.xlsx"], "output_filename": "YNAB-{bank}-FROM-{first_date}-TO-{last_date}", "parse_function": parse_bank_norwegian } # Add more banks and patterns as needed } def process_bank_statement(file_path, parse_function, delimiter): """ Process a single bank statement file Args: file_path (str): Path to the bank statement file parse_function (callable): Function to parse the specific bank format delimiter (Optional): Field delimiter Returns: pd.DataFrame: Processed YNAB-compatible data """ file_extension = Path(file_path).suffix.lower() try: # Handle CSV files if file_extension == ".csv": data = pd.read_csv(file_path, delimiter=delimiter) # Handle Excel files elif file_extension in [".xlsx", ".xls"]: data = pd.read_excel(file_path) else: print(f"Skipping unsupported file type: {file_path}") return pd.DataFrame() # Call the appropriate bank-specific parsing function ynab_data = parse_function(data) return ynab_data except Exception as e: print(f"Error processing file {file_path}: {e}") raise e return pd.DataFrame() def find_bank_config(filename): """ Find the appropriate bank configuration for a given filename Args: filename (str): Name of the file to match Returns: tuple: (bank_name, bank_config) or (None, None) if no match """ import fnmatch for bank_name, bank_config in BANKS.items(): for pattern in bank_config["patterns"]: if fnmatch.fnmatch(filename, pattern): return bank_name, bank_config return None, None def convert_bank_statements_to_ynab(input_files=None): """ Convert bank statements to YNAB format Args: input_files (list): Optional list of specific files to process If None, processes all files in current directory """ current_directory = Path.cwd() output_directory = current_directory / "YNAB_Outputs" # Create output directory if it doesn't exist output_directory.mkdir(exist_ok=True) # Get list of files to process if input_files: print(f"Processing {len(input_files)} dragged file(s)...") files_to_process = [Path(f) for f in input_files if Path(f).exists()] else: print("Processing all files in current directory...") files_to_process = [] # Collect all files matching any bank pattern for bank_config in BANKS.values(): for pattern in bank_config["patterns"]: matching_files = glob.glob(str(current_directory / pattern)) files_to_process.extend([Path(f) for f in matching_files]) files_processed = False # Process each file for file_path in files_to_process: if not file_path.exists(): print(f"File not found: {file_path}") continue # Find matching bank configuration bank_name, bank_config = find_bank_config(file_path.name) if not bank_config: print(f"No bank configuration found for file: {file_path.name}") continue print(f"Processing file: {file_path} for {bank_name}") parse_function = bank_config["parse_function"] delimiter = bank_config.get("delimiter", ",") # Process the file ynab_data = process_bank_statement(str(file_path), parse_function, delimiter) if ynab_data.empty: print(f"No data processed for {file_path}") continue filename_placeholders = { 'bank': bank_name, 'first_date': ynab_data['Date'].min().date(), 'last_date': ynab_data['Date'].max().date(), } file_retry_count = 0 while True: output_filename = bank_config["output_filename"].format(**filename_placeholders) if file_retry_count > 0: output_filename += f" ({file_retry_count})" output_filename += ".csv" output_file = output_directory / output_filename if not output_file.exists(): break file_retry_count += 1 # Export to CSV for YNAB import ynab_data.to_csv(output_file, index=False) print(f"Data saved to {output_file}") files_processed = True if not files_processed: print("No files were processed. Make sure your files match the expected patterns.") if __name__ == "__main__": # Check if files were dragged onto the script if len(sys.argv) > 1: # Files were dragged - process them files = sys.argv[1:] convert_bank_statements_to_ynab(files) else: # No files dragged - run normal directory processing convert_bank_statements_to_ynab() # Keep window open on Mac so user can see results input("\nPress Enter to close...")