|
|
|
@@ -1,9 +1,6 @@ |
|
|
|
package FiveStage |
|
|
|
|
|
|
|
import chisel3._ |
|
|
|
import chisel3.core.Input |
|
|
|
import chisel3.util.ShiftRegister |
|
|
|
import chisel3.experimental.MultiIOModule |
|
|
|
import chisel3.experimental._ |
|
|
|
|
|
|
|
|
|
|
|
@@ -32,7 +29,6 @@ class CPU extends MultiIOModule { |
|
|
|
val IF = Module(new InstructionFetch) |
|
|
|
val EX = Module(new Execute) |
|
|
|
val MEM = Module(new MemoryFetch) |
|
|
|
// val WB = Module(new Execute) (You may not need this one?) |
|
|
|
|
|
|
|
/** |
|
|
|
* Setup. You should not change this code |
|
|
|
@@ -73,8 +69,14 @@ class CPU extends MultiIOModule { |
|
|
|
MEMBarrier.clear := clear |
|
|
|
WBBarrier.clear := clear |
|
|
|
|
|
|
|
// The value that is written back to the register |
|
|
|
val writeback = Wire(UInt(32.W)) |
|
|
|
val forwarder = Module(new Forwarder).io |
|
|
|
forwarder.IF := IFBarrier.out |
|
|
|
forwarder.ID := IDBarrier.out |
|
|
|
forwarder.EX := EXBarrier.out |
|
|
|
forwarder.MEM := MEMBarrier.out |
|
|
|
forwarder.WB := WBBarrier.out |
|
|
|
forwarder.writeback := writeback |
|
|
|
|
|
|
|
// Stage 1 |
|
|
|
IFBarrier.in := IF.io |
|
|
|
@@ -92,24 +94,10 @@ class CPU extends MultiIOModule { |
|
|
|
IDBarrier.in.ALUop := ID.io.ALUop |
|
|
|
|
|
|
|
// Stage 3 |
|
|
|
val exToRs1 = IDBarrier.out.instruction.registerRs1 === EXBarrier.out.instruction.registerRd && EXBarrier.out.controlSignals.regWrite |
|
|
|
val exToRs2 = IDBarrier.out.instruction.registerRs2 === EXBarrier.out.instruction.registerRd && EXBarrier.out.controlSignals.regWrite |
|
|
|
val memToRs1 = IDBarrier.out.instruction.registerRs1 === MEMBarrier.out.instruction.registerRd && MEMBarrier.out.controlSignals.regWrite |
|
|
|
val memToRs2 = IDBarrier.out.instruction.registerRs2 === MEMBarrier.out.instruction.registerRd && MEMBarrier.out.controlSignals.regWrite |
|
|
|
val wbToRs1 = IDBarrier.out.instruction.registerRs1 === WBBarrier.out.instruction.registerRd && WBBarrier.out.controlSignals.regWrite |
|
|
|
val wbToRs2 = IDBarrier.out.instruction.registerRs2 === WBBarrier.out.instruction.registerRd && WBBarrier.out.controlSignals.regWrite |
|
|
|
val ldToRs1 = exToRs1 && EXBarrier.out.controlSignals.memToReg |
|
|
|
val ldToRs2 = exToRs2 && EXBarrier.out.controlSignals.memToReg |
|
|
|
|
|
|
|
//printf(p"0x${Hexadecimal(IF.io.PC)}: EX in: ${IDBarrier.out.instruction.registerRs1}, MEM out: ${MEMBarrier.out.instruction.registerRd}\n") |
|
|
|
|
|
|
|
when ((ldToRs1 || ldToRs2) && state =/= LOAD_FREEZE) { |
|
|
|
//printf(p"0x${Hexadecimal(IF.io.PC)}: Load freeze\n") |
|
|
|
// Freeze all barriers (repeating the instruction) until the value is loaded from memory |
|
|
|
when (forwarder.loadFreeze && state =/= LOAD_FREEZE) { |
|
|
|
// Freeze the IF and ID barriers, repeating the instruction. |
|
|
|
// EX is cleared, so the instruction isn't computed and written twice. |
|
|
|
freeze := true.B |
|
|
|
|
|
|
|
// The MEM and WB carry out their instructions, but MEM is cleared so it doesn't repeat |
|
|
|
// the instruction. This carries through to WB next cycle. |
|
|
|
MEMBarrier.freeze := false.B |
|
|
|
WBBarrier.freeze := false.B |
|
|
|
EXBarrier.freeze := false.B |
|
|
|
@@ -117,48 +105,11 @@ class CPU extends MultiIOModule { |
|
|
|
state := LOAD_FREEZE |
|
|
|
} |
|
|
|
|
|
|
|
//printf(p"0x${Hexadecimal(IF.io.PC)}: freeze: $freeze, exR1: ${IDBarrier.out.instruction.registerRs1}, rd: ${IF.io.instruction.registerRd}, IF: ${IFBarrier.out.instruction.opcode}, ID: ${IDBarrier.out.instruction.opcode}, EX: ${EXBarrier.out.instruction.opcode}, MEM: ${MEMBarrier.out.instruction.opcode}, WB: ${WBBarrier.out.instruction.opcode}\n") |
|
|
|
|
|
|
|
//printf(p"0x${Hexadecimal(IF.io.PC)}: next: 0x${Hexadecimal(IFBarrier.out.next)}, IF: 0x${Hexadecimal(IFBarrier.out.PC)}, ID: 0x${Hexadecimal(IDBarrier.out.PC)}, EX: 0x${Hexadecimal(EXBarrier.out.PC)}, MEM: 0x${Hexadecimal(MEMBarrier.out.PC)}, WB: 0x${Hexadecimal(WBBarrier.out.PC)}, freeze: $freeze\n") |
|
|
|
|
|
|
|
val rs1 = Wire(UInt(32.W)) |
|
|
|
when (ldToRs1) { |
|
|
|
rs1 := MEMBarrier.out.dataOut |
|
|
|
}.elsewhen (exToRs1) { |
|
|
|
rs1 := EXBarrier.out.result |
|
|
|
}.elsewhen (memToRs1) { |
|
|
|
rs1 := writeback |
|
|
|
}.elsewhen (wbToRs1) { |
|
|
|
rs1 := WBBarrier.out.writeback |
|
|
|
}.otherwise { |
|
|
|
rs1 := IDBarrier.out.reg1 |
|
|
|
} |
|
|
|
|
|
|
|
val rs2 = Wire(UInt(32.W)) |
|
|
|
when (ldToRs2) { |
|
|
|
rs2 := MEMBarrier.out.dataOut |
|
|
|
}.elsewhen (exToRs2) { |
|
|
|
rs2 := EXBarrier.out.result |
|
|
|
}.elsewhen (memToRs2) { |
|
|
|
rs2 := writeback |
|
|
|
}.elsewhen (wbToRs2) { |
|
|
|
rs2 := WBBarrier.out.writeback |
|
|
|
}.otherwise { |
|
|
|
rs2 := IDBarrier.out.reg2 |
|
|
|
} |
|
|
|
|
|
|
|
//printf(p"0x${Hexadecimal(IFBarrier.out.PC)}: next: ${Hexadecimal(IF.io.addr)} freeze: $freeze, ID imm: ${IDBarrier.out.imm}, ID PC: ${IDBarrier.out.PC}, EX result: ${EXBarrier.out.result}\n") |
|
|
|
|
|
|
|
//printf(p"0x${Hexadecimal(IF.io.PC)}: Reg write: ${MEMBarrier.out.controlSignals.regWrite}, ExToR1: $exToRs1, MEMToR1: $memToRs1, wbToR1: $wbToRs1, R1: $rs1, EX: ${EXBarrier.out.result}, MEM: $writeback, WB: ${WBBarrier.out.writeback}}\n") |
|
|
|
|
|
|
|
//printf(p"0x${Hexadecimal(IF.io.PC)}: Next: 0x${Hexadecimal(IFBarrier.out.next)}, freeze: $freeze, IF: ${IFBarrier.out.instruction}, ID: ${IDBarrier.out.instruction}, EX: ${EXBarrier.out.instruction}, MEM: ${MEMBarrier.out.instruction}\n") |
|
|
|
|
|
|
|
|
|
|
|
EX.io.PC := IDBarrier.out.PC |
|
|
|
EX.io.controlSignals := IDBarrier.out.controlSignals |
|
|
|
EX.io.branchType := IDBarrier.out.branchType |
|
|
|
EX.io.reg1 := rs1 |
|
|
|
EX.io.reg2 := rs2 |
|
|
|
EX.io.reg1 := forwarder.exRs1 |
|
|
|
EX.io.reg2 := forwarder.exRs2 |
|
|
|
EX.io.imm := IDBarrier.out.imm |
|
|
|
EX.io.ALUop := IDBarrier.out.ALUop |
|
|
|
|
|
|
|
@@ -170,22 +121,7 @@ class CPU extends MultiIOModule { |
|
|
|
EXBarrier.in.branch := EX.io.branch |
|
|
|
|
|
|
|
// Stage 4 |
|
|
|
val memToMem = EXBarrier.out.instruction.registerRs2 === MEMBarrier.out.instruction.registerRd && EXBarrier.out.controlSignals.memWrite |
|
|
|
val wbToMem = EXBarrier.out.instruction.registerRs2 === WBBarrier.out.instruction.registerRd && EXBarrier.out.controlSignals.memWrite |
|
|
|
|
|
|
|
val memWriteData = Wire(UInt(32.W)) |
|
|
|
|
|
|
|
when (memToMem) { |
|
|
|
memWriteData := writeback |
|
|
|
}.elsewhen (wbToMem) { |
|
|
|
memWriteData := WBBarrier.out.writeback |
|
|
|
}.otherwise { |
|
|
|
memWriteData := EXBarrier.out.reg2 |
|
|
|
} |
|
|
|
|
|
|
|
//printf(p"0x${Hexadecimal(IF.io.PC)}: Reg write: ${MEMBarrier.out.controlSignals.regWrite}, ExToR2: $exToRs2, MEMToR2: $memToRs2, wbToR2: $wbToRs2, R2: $rs2, EX: ${EXBarrier.out.result}, MEM: $writeback, WB: ${WBBarrier.out.writeback}}\n") |
|
|
|
|
|
|
|
MEM.io.dataIn := memWriteData |
|
|
|
MEM.io.dataIn := forwarder.memWrite |
|
|
|
MEM.io.writeEnable := EXBarrier.out.controlSignals.memWrite |
|
|
|
MEM.io.dataAddress := EXBarrier.out.result |
|
|
|
|
|
|
|
@@ -199,20 +135,13 @@ class CPU extends MultiIOModule { |
|
|
|
// Stage 5 |
|
|
|
when (EXBarrier.out.branch) { |
|
|
|
IF.io.addr := EXBarrier.out.result |
|
|
|
//printf(p"Jumping to ${EXBarrier.out.result}\n") |
|
|
|
IDBarrier.clear := true.B |
|
|
|
EXBarrier.clear := true.B |
|
|
|
} |
|
|
|
|
|
|
|
when (false.B && freeze) { |
|
|
|
ID.io.writeEnable := false.B |
|
|
|
ID.io.writeAddr := 0.U |
|
|
|
ID.io.writeData := 0.U |
|
|
|
}.otherwise { |
|
|
|
ID.io.writeEnable := MEMBarrier.out.controlSignals.regWrite |
|
|
|
ID.io.writeAddr := MEMBarrier.out.instruction.registerRd |
|
|
|
ID.io.writeData := writeback |
|
|
|
} |
|
|
|
ID.io.writeEnable := MEMBarrier.out.controlSignals.regWrite |
|
|
|
ID.io.writeAddr := MEMBarrier.out.instruction.registerRd |
|
|
|
ID.io.writeData := writeback |
|
|
|
|
|
|
|
WBBarrier.in.PC := MEMBarrier.out.PC |
|
|
|
WBBarrier.in.instruction := MEMBarrier.out.instruction |
|
|
|
|